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Abstract

We construct and identify star representations canonically associated with holonomy-reducible
simple symplectic symmetric spaces. This leads a non-commutative geometric realization of the
correspondence between causal symmetric spaces of Cayley-type and Hermitian symmetric spaces
of tube-type. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is twofold. We first want to present a generalization of a construction
givenin [4]. There, a covariant star product (see Definition 2.5) has been defined on a dense
open subset of every holonomy-reducible simple symplectic (non-Kaehler) symmetric space
M = G/H, providing a star representatiprof the transvection algebgeof the symmetric
spaceM (see Section 3). Despite the fact that this star product is only defined on an open
subset ofM, the representatiop in the caseg = sl(2, R) exponentiates to the group
G = SL(2, R) as a holomorphic discrete series representation. In particular, the covariant
star product does not lead to a representatio8lg®2, R) prescribed by the orbit-type —
indeed, in this case, one has = SL(2, R)/SQ(1, 1) which classically yields a principal
series representation. It should also be noted that the star representation does generally not
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exponentiate t6; as in the case af = SL(3, R) for instance. In the present work, we prove

that the star representatiprexponentiates tG¢ when the symmetric spadé = G/H is of
Cayley-type. The resulting representatiorGofurns out to be a holomorphic discrete series
representation (when one assigns a particular real value to the deformation parameter); see
Theorem 4.4. The proof uses Jordan techniques, providing close relations between Jordan
algebras theory and covariant star products.

Second, we would like to indicate how the above construction leads to a (non-commutative)
realization of the (algebraic) duality existing between Cayley symmetric spaces and
Hermitian symmetric spaces of tube-type. Below, we make this assertion more precise.

Let G/K be a Hermitian symmetric space of tube-type. Then there exists one and only
one (up to isomorphism) symmetric spa@gH such that

1. H acts reducibly ofen(G/H),
2. G/H carries aG-invariant symplectic structure.

This fact leads to the well-known “duality” between Hermitian symmetric spaces of
tube-type and Cayley symmetric spaces [8]. As such, this duality is algebraic in the sense
that it is a correspondence between two lists of involutive simple Lie algebras. Another
duality defined on Hermitian symmetric spaces is the so-called “compact—non-compact”
duality. In this case, the correspondence is not only algebraic. Indeed, denotiigaby
compact real form o&C, there is a holomorphi6-equivariant embeddinG/K — U/K
underlying the duality. Equivalently, one has a homomorphism of algetftad//K) —
C*(G/K). Back to Cayley symmetric spaces, our construction of a covariant star product
described above leads to a deformation of the (infinitesimal) action of (the Lie algebra) of
G on an open subset @f/ H. This deformed action turns out to be equivalent to the action
of G on the tube domai /K. Analogously with the compact—non-compact duality, one
therefore gets a geometric realization of the correspondence between Cayley symmetric
spaces and Hermitian symmetric spaces of tube-type.

This paper is organized as follows. In Sections 2 and 3, we recall the notion of covariant
star product [1] and results of [4]. Section 4 contains our main result, and it starts with
recalling some Jordan algebras theory.

2. Covariant +-products

In this section,(M, w) is a symplectic manifold ang is a finite-dimensional real Lie
algebra. One assumes one has a representatjpescdn algebra of symplectic vector fields
on (M, w). That is, one has a Lie algebra homomorphism X' (M) : X — X* (X(M)
stands for the space of smooth sectiond ¢#7)) such that for allX in g one has

ﬂx*a) = 0,

whereL denotes the Lie derivative. One supposes furthermore that this representation of
is strongly Hamiltonian which means that there exist®dinear map

g5 C® (M) X > iy,
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such that
dix =ixr0 VX eg, Ax,y] = {Ax, Ar},

where {, } denotes the Poisson structure @i¥°(M) associated to the symplectic
form w.

Definition 2.1. A quadruple(M, w, g, ) with (M, w), g andx as above is called a strongly
Hamiltonian system. The map: g — C°°(M) is called the moment mapping.

Example 2.2 (Coadjoint orbits). LetM = O C g* be a coadjoint orbit of a Lie group
G with Lie algebrag. In this case, we denote iy — X (M) : X — X* the rule which
associates to an elemeiitin g its fundamental vector fieldn O:

X5 = E Ad* (exp(—tX))x,
dr g

where Ad'(g)x denotes the coadjoint action of the elemgrt G onx € g*.

The formulawf?(X*, Y*) = (x,[X,Y]) (with X, Y € g) then defines a symplectic
structure called after Kirillov, Kostant and Sauriau, #i€S symplectic forranO. Defining,
forall X € g, the functiom.y € C*°(O) by

Ax(x) = (x, X),

one then has that the quadrupt®, »©, g, 1) is a strongly Hamiltonian system.

In the setting of deformation quantization, there is a natural way to define the quantization
of a classical Hamiltonian system [1,3,9]. We first recall what deformation quantization
(star product) is.

Definition 2.3. Let(M, {, }) be a Poisson manifold. A star product@, {, }) isan asso-
ciative multiplicationx, on the spac€ > (M)[[v]] of formal power series in the parameter
v with coefficients in the smooth complex-valued functiong#rOne furthermore requires
the following properties to be true:

1. The mapx, : C(M)[[v]] x C(M)[[v]] — C=®(M)[[v]] is C[[v]]-bilinear and for
allu e C*(M) c C*®(M)[[v]] one hast+,1 = 1+,u = u (C[[v]] denotes the field of
power series iv with (constant) complex coefficients).

2. Forallu, v e C*°(M), one has

i+, v mod(v) = uv, (uveyv — vsﬁrvu)mod(vz) = 2v{u, v}.

In other words, a star product is an associative formal deformation of the pointwise
multiplication of functions in the direction of the Poisson structure.

Example 2.4. The Moyal star product o?". We fix M = R?" (or an open set ifR?")
andw = ), _; Ajj dx' A dx/ with constant coefficientsjj’s.

i<j
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Letu, v € C*(R?") and define their Moyal product by the formal power series:
k ak ak

o0
urOv = uv + Zv—Ailjl e Al — 1 —— — .
v k—lk! Oxil...9xik  QxJ1...9xJk

The C[[v]]-bilinear extension of the above product & (R%*)[[v]] then defines a star
product on(R?", A) called Moyal star product.

Definition 2.5 (Arnal and Cortet [1]). LetM, w, g, 1) be a classical strongly Hamiltonian
system. A star product, on (M, w) is calledg-covariant if for allX, Y € g, one has

Axvepdy — AytrydAxy = 2v{Ax, Ay}.

In order to avoid technical difficulties in defining the star representation (see below), we
will assume our covariant star products to satisfy the following condition.

Definition 2.6. Let (M, w, g, A) be a strongly Hamiltonian system. Lef be ag-covariant
star product oiiM, w). We say thatr, has the property (B) if there exists an integee N
such that one has

(rxtrpwymod™) = (hx o, u)modwh*),

(utydx)mod(w™) = (ur 1 x)mod(v™ )

forall X € gandu € C*°(M) andn € N.

In other words, the seriés, +,u andu, A x stop atordeN independent of in C°(M).

The data of a covariant star product satisfying the property (B) yields representations
of g. Let E, := C®°(M)[[v, 1/v]] be the space of formal power seriesiirand /v with
coefficients inC>(M). Assume that thg-covariant star product, on (M, w) satisfies the
property (B). Then for allX € g anda = Zeezv‘ag € E,, the expression

Ax¥opa = Zve (Axepag)
Lel

defines an element @, . Indeed, let; : C®(M)xC>®(M) — C°(M) be thekth co-chain
of +,, that is

UteyV (= kack(u, v), u,veC®M).
Then,

Axtopa = ZUKkack()\x,ag) = va ( Z Ck()»x,dg)) .

LeZ k=N meZ k+L=m

Therefore, each sum occurring in the parentheses has only a finite number of terms since
O0<k<N.
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Definition 2.7. Let (M, w, g, A) be a strongly Hamiltonian system and be ag-covariant
star product oriM, ) satisfying the property (B). One defines the representajibrend
pRofgonE, by

L 1 R 1
p-(X)a = —(x¥ya), P (X)a == —(a¥yhrx).
2v 2v

Definition 2.8. Let G be a connected Lie group with Lie algelyalLet (M, w, g, ) be a
strongly Hamiltonian system. Let, be ag-covariant star product ofM, w) satisfying the
property (B). The associated star representatiofi ¢f it exists) is the representation-
of G on E, such that

drt = pt.

3. Holonomy-reducible symplectic symmetric spaces

Let G be a connected simple Lie group. Let us denotglitg Lie algebra. LetD be
an adjoint orbit ofG in g. Choose a base pointin O and denote by the Lie algebra
of its stabilizer ing. Sinceg is simple theKilling form g establishes an equivariant linear
isomorphism betweegmand its dual*. Therefore, every adjoint orbit can be identified with
a coadjoint one. We will denote ly” the KKS symplectic structure afi (cf. Example 2.2).

Definition 3.1. An adjoint orbitO in g is symmetric if there exists an involutive automor-
phismo of g such thaty = {X € g|o(X) = X}. In this case, we denote lgy= h & q the
decomposition of induced byo (o |q = —idg).

One hasly, q] = g and [, q] = b. In a symmetric situation, the KKS form induces on
the vector space a bilinear symplectic form which we denote [, this form is invariant
under the action df. The triple(g, o, £2) is called asimple symplectic symmetric triglg].
Symmetric orbits have been studied in [2]. In particular, one has the following proposition.

Proposition 3.2. LetO be a symmetric adjoint orbit of a simple Lie groGpand (g, o, £2)
be its associated symplectic symmetric triple. The following assumptions are equivalent

1. The centeg(h) of h contains a non-compact element

2. The subspace splits into a direct suny = [ @ I' of isomorphich-modules One has
[L]] =0, [l,I] = 0and bothl and " are B-isotropic ands2-Lagrangian subspaces
of q.

Such a symmetric orbit is calldtblonomy-reduciblé § acts reducibly onm.

Proposition 3.3. Let O be a holonomy-reducible symmetric orbitgnWe define the map
¢:q=l®l > Oby

o, 1) == Ad(exp(l) - expl)) - o.
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Theng is a Darboux chart or©, »©). Precisely, one hag*w® = 2.

We transport the infinitesimal action gion¢ (q) C O to an infinitesimal action of on
q via ¢. One then gets a homomorphism of Lie algebra

g— x(@: X —> X*.
Setting
Aa(x) i=B(p(x),A), xeq, Aeg,

one obtains the strongly Hamiltonian system (cf. Definition 2qLX2, g, A). The main
property of the Darboux cha¢t is as follows.

Proposition 3.4. The Moyal star product on the symplectic vector sp@ce?) is g-cova-
riant. Moreover, the Moyal star product in this case satisfies the progBity

Definition 3.5. Let S;(q) be the space of distributions enwhich are tempered in the
I'-variables w.r.t. the Lebesgue measufeoth ['. OnS5(q), we consider the partial Fourier
transformF : S,(q) — S5(q) which reads formally as

(Fuyl,m) = / 120D Iy dl, i = L
[/

Hereq := [ @ I, i.e. we identify the dual spad€& with [ by use of$2. We will also adopt
the notationi := Fu.

We define théR-isomorphism
- C:lnp > z=1+ivm,

where the parameter is now considered as beingal. In ¢ = [ @ I, we choose an
§2-symplectic basi§L,, L);; 1 < a < n}, whereL, € landL/, € I'. Onl, we define the
coordinate system = §2(x, L)L, =: x*L,.
If & is an element ofj, we define its trace as
spurth) := 2([h, La], Ly).

In this setting, one has the holomorphic constant vector fielfon

1 .
00 = o= O(La) —i(La)y). 1=a<n.

Definition 3.6. Considering® c g€, we define, for alld € g©, the polynomials ori®:
hE(Z) = AbC + [A[/(C, Z] € h(cy ZE(Z) = A[C + [AhC, Z] + %[Z, [Z, A[/(C]] S [(C,

wherez e (CandA = Agc+Ac+Ayc according to the decompositigh = hCa a1,
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Definition 3.7. ForallA € g€, we define the holomorphic vector fielel,” € I"(71-°(1C))
by

) f =15 @) 0 - )@,
wherez € 1€, £ e (€, C) and, where for allv = w1 + iwy € I€ = [ il, we set
w® i=w{ +iwj, 1<a <n.

In the same way, extending the Killing forfhand the trace sput-linearly tohC, we
define the complex polynomial of degree 1:

o1
)= Z(f;(hc, 0) + v spurh$)).

Proposition 3.8. For all A € g, one has
1

oo F ) =1 i+ 2,0 -,
Vv

whereu is chosen in such a way that the LHS and the RHS make éewgse € S(q) the
Schwartz space o).

In particular, the formula
1
pAf =tV f+ 2V f Aeg, fec ) [[v ;H 1)

defines a (holomorphic) representatiorgain E, := C*®(()[[v, 1/v]].

4. Main theorem
4.1. Euclidean—Jordan algebras and tube domains

An algebraV overR or C is said to be a Jordan algebra if for all elementndy in V,
one has

xoy=yox, o x-(Fy=xF@y).

For an element € V, let L(x) be the linear map oV defined byL (x)y := x - y. We
denote byr (x, y) the symmetric bilinear form ol defined byr (x, y) = Tr L(x - y).

A Jordan algebr is semi-simple if the form is non-degenerate dn. A semi-simple
Jordan algebra is unital, we denotedjs identity element.

One defines of¥ the triple product

,y,zbi=@x-y)-z+x-(y-2)—y-(x-2).

We denote by Oy the endomorphism of defined byxOy(z) := {x, y, z}. Remark that
xOy = L(x-y) +[L(x), L(y)] (see [11] for more details).
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Definition 4.1. A Jordan algebr&/, overR is said to be Euclidean if the bilinear form
7(x, y) is positive definite orV,.

Let V, be an Euclidean Jordan algebra (EJA), then the set
C := {x?|xinvertibleinV,}

is an open, convex, self-dual conelip. Those properties af actually characteriz&, as
an EJA.

Let V be the complexification of,. Consider the tub&: = V,, +iC C V and the Lie
group Aui(T¢) of holomorphic automorphisms @. We denote byG = (Aut(T¢)), its
identity-connected component.

It can be shown that every elemeXitof the Lie algebragy of the group AufTc) is a
holomorphic vector field on the tuli&: of the form (see [7], p. 209)

X@)=u+Tz+ P(2)v,

whereu,v € V,, T is a linear map of the forrT = «0Ob with a,b € V, andP(z) =
2L(2)% - L(Z?).

In other words, the Lie algebrgis a symmetric Lie algebra admitting the following
graduation:

g=9-19D 90D g1,

whereg_1 := V, is the set of constant polynomial vector fieldsignacting by translations,
go := V,0V, isthe subset af((V,) preservingthe con€ andg; := {P(z)v = {z, v, z}|v €
V,} is a subset of homogeneous polynomial méps> V of degree 2. Remark thgi =~
Ad(j)V, wherej € G denotes the Jordan inverg&) = —z 1.

One writes(u, T, v) for X € g. The following result is classical.

Proposition 4.2. For X = (u, T,v) andX’ = (u/, T', V) in g, one has
[X,X]= U =T'u, 2/0v+[T,T'] — 2400, T"*v — T™),

whereT* denotes the adjoint endomorphism with respeat.to

The mapd : (u, T,v) — (v, —T*%, u) is an involutive automorphism @f, such that
0(gi) = g—i, i € {—1,0, 1}. The Lie algebrgy is semi-simple

The Killing form ong is given by

BX,X') = Bo(T, T +2tr(TT) — 47 (u, v') — 4z (v, u'),
whereg, denotes the standard Killing form ai(V,).
Note that using this identification, we have, fary, z € V, = g_1,
xOy = —3[x, 6y], 2

{x,y,z}:—%[[x,@y],z]. (3)
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The EJAs and their corresponding symmetric Lie algebras are given by the following table:

g ¢ | v,
su(n, n) su(n) @IiR M(n,C) Herm(n, C)
sp(n, R) su(n) IR Sym(n, C) Sym(n, R)
50%(4n) su(2n) @ iR Skew(2n, C) Herm(n, H)
so(n, 2) so(n) ®IR cr R"

€7(—25) e DIR Herm(3,0) @ C Herm(3, O)

Adopting to our setting results of [8] (see also [6]), one gets the following proposition.

Proposition 4.3.

1. The groupG = Aut(7¢), admits a symmetric holonomy-reducible coadjoint orbit
2. Let K be the maximal compact subgroup of G. Then the symmetric §pdce~ T¢ is
an Hermitian symmetric space of tube-type

4.2. Holomorphic discrete series

Let G = (Aut(T¢)), be the Hermitian Lie group associated with an Euclidean—Jordan
algebraV,. We denote by: the dimension o/, and byr its rank. OnV,, one defines (in
a canonical way) two homogeneous polynomials) of degreer and tix) of degree 1
which coincide with usual determinant and trace in case of matrix Jordan algebras (see [7]
for more detalils).

For areal parameter, consider the spadé,ﬁ(Tc) of holomorphic functiong € O(T¢)
such that

If12 = /T F@2A™ 2" (y) dx dy < oo,
C

wherez = x + iy € Tc. Note that the measut@—2*/7(y) dx dy on T¢ is invariant under
the action of the groug;. Form in the Wallach seWV (see [7], p. 264) these spaces are
non-empty Hilbert spaces with reproducing kernels.

The action ofG on H2(T¢) (m € W) given by

Tm(8) f(2) = Det"(D,-1(2)) f (g1 2) @)

is called aholomorphic discrete series representation
In the above formuIeDg_l(z) denotes the derivate map of the conformal transformation

7z — g~ 1.z of the tube.
The derivate representation

dmm (X)9 (2) = —m%Tr DX(2) - ¢(2) — D¢ (2)(X (2)) ®)
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is then given by the following formulae [10]:

for X(z2) = (1,0,0), dmy,(X)¢(2) = —Du¢(2),
forX(z) = (0,0,v), dmy(X)¢(z) = —2mt(z,v)$(z) — Dp, ()9 (2),

for X(z) = (0,7, 0), dmp(X)e(z) = —m%Tr To2) — Dreyd (2),

where D¢ (z) denotes the action of the tangent vectoon the functiong at the point
zeV.

Theorem 4.4. The star representatio;avL associated tav, is equivalent to the derivate
holomorphic discrete series representatibr), for

B(o,0) + nvc
m=——
4vrc

where c is the eigenvalue of the adjoint action of the base point o

Proof. We use the notations of Section 3. Using the identification formulae (2) and (3), one
gets that

zZY = X(2).

Let us now discuss the expression fQ¢ = (1/2v)(B(hS, 0) + v spurth$)).

The Lie algebrd is reductive and therefore it admits the following decompositiea
3(h) & [b, b], where3(h) is the center ofy. We write H = H, + H, according to this
decomposition. Because the trace function vanishes on the Lie algebra commutator, we have
SpurH) = spur H;). Butthe center of is one-dimensional and any eleméht € 3(h) can
be written asH, = h; - o (see e.g. [2]). Therefore;,”) = (1/2v)[B(H;, 0) + v SpUrH,)].
Furthermore, we havg(H,, o) = h;B(o, 0) and

SPUnH;) = h; - ad(o)|; = h;c -id|; = h nc.

In other words it means that, is proportional to T(ad(hg)h).

Observe now that for the polynom%@(z) introduced in Definition 3.6, one ha§ () =
—2DX(z). So, finally we have

T(,,) _ _ﬂ(o, 0) + nvc

¢ Tr DX.

4nve

The identification of corresponding terms in formulae (1) and (5) completes the prdof.

Remark. The vector field parE)((”) of the star representatigh( X), X € g (see (1)) isin
general singular on the entife = [C. By this we mean that, denoting ¥ the local flow
of X, the set of “bad” Cauchy datgy = {z € V|¢tX (z) is not defined for all values af is
in general not empty. However, in the case where the gt@igpthe automorphism group
of a tube domain, Theorem 4.4 shows that the complementaty sBUx ¢ Sx = V, in V

is not empty. The infinitesimal action gfon (a connected component @f)exponentiates
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to G as its action on the holomorphic tubular realizatiorGofK . A deep geometric study

and in particular relations between star representations and Riccati-type ordinary differential
equations (see [12]) has not been investigated here. However, one can at least say that, given
a holonomy-reducible symmetric orldit of G, one then canonically gets a one-parameter
family of representation$p,},cr Of g deforming the infinitesimal actiofeg) of g on

an open subseb (p) of O. This parameter family leads to an interpolation between the
infinitesimal action ofg on G/H and its holomorphic action o6/K (o, for the value
—(1/no)B(o, o) of v).
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