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Abstract

We construct and identify star representations canonically associated with holonomy-reducible
simple symplectic symmetric spaces. This leads a non-commutative geometric realization of the
correspondence between causal symmetric spaces of Cayley-type and Hermitian symmetric spaces
of tube-type. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is twofold. We first want to present a generalization of a construction
given in [4]. There, a covariant star product (see Definition 2.5) has been defined on a dense
open subset of every holonomy-reducible simple symplectic (non-Kaehler) symmetric space
M = G/H , providing a star representationρ of the transvection algebrag of the symmetric
spaceM (see Section 3). Despite the fact that this star product is only defined on an open
subset ofM, the representationρ in the caseg = sl(2,R) exponentiates to the group
G = SL(2,R) as a holomorphic discrete series representation. In particular, the covariant
star product does not lead to a representation ofSL(2,R) prescribed by the orbit-type —
indeed, in this case, one hasM = SL(2,R)/SO(1,1) which classically yields a principal
series representation. It should also be noted that the star representation does generally not
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exponentiate toG as in the case ofG = SL(3,R) for instance. In the present work, we prove
that the star representationρ exponentiates toGwhen the symmetric spaceM = G/H is of
Cayley-type. The resulting representation ofG turns out to be a holomorphic discrete series
representation (when one assigns a particular real value to the deformation parameter); see
Theorem 4.4. The proof uses Jordan techniques, providing close relations between Jordan
algebras theory and covariant star products.

Second, we would like to indicate how the above construction leads to a (non-commutative)
realization of the (algebraic) duality existing between Cayley symmetric spaces and
Hermitian symmetric spaces of tube-type. Below, we make this assertion more precise.

LetG/K be a Hermitian symmetric space of tube-type. Then there exists one and only
one (up to isomorphism) symmetric spaceG/H such that

1. H acts reducibly onTeH(G/H),
2. G/H carries aG-invariant symplectic structure.

This fact leads to the well-known “duality” between Hermitian symmetric spaces of
tube-type and Cayley symmetric spaces [8]. As such, this duality is algebraic in the sense
that it is a correspondence between two lists of involutive simple Lie algebras. Another
duality defined on Hermitian symmetric spaces is the so-called “compact–non-compact”
duality. In this case, the correspondence is not only algebraic. Indeed, denoting byU a
compact real form ofGC, there is a holomorphicG-equivariant embeddingG/K → U/K

underlying the duality. Equivalently, one has a homomorphism of algebrasC∞(U/K) →
C∞(G/K). Back to Cayley symmetric spaces, our construction of a covariant star product
described above leads to a deformation of the (infinitesimal) action of (the Lie algebra) of
G on an open subset ofG/H . This deformed action turns out to be equivalent to the action
of G on the tube domainG/K. Analogously with the compact–non-compact duality, one
therefore gets a geometric realization of the correspondence between Cayley symmetric
spaces and Hermitian symmetric spaces of tube-type.

This paper is organized as follows. In Sections 2 and 3, we recall the notion of covariant
star product [1] and results of [4]. Section 4 contains our main result, and it starts with
recalling some Jordan algebras theory.

2. Covariant �-products

In this section,(M,ω) is a symplectic manifold andg is a finite-dimensional real Lie
algebra. One assumes one has a representation ofg as an algebra of symplectic vector fields
on (M,ω). That is, one has a Lie algebra homomorphismg→ X (M) : X �→ X∗ (X (M)
stands for the space of smooth sections ofT (M)) such that for allX in g one has

LX∗ω = 0,

whereL denotes the Lie derivative. One supposes furthermore that this representation ofg
is strongly Hamiltonian which means that there exists anR-linear map

g
λ→C∞(M) : X �→ λX,
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such that

dλX = iX∗ω ∀X ∈ g, λ[X,Y ] = {λX, λY },
where { , } denotes the Poisson structure onC∞(M) associated to the symplectic
formω.

Definition 2.1. A quadruple(M,ω, g, λ)with (M,ω), g andλ as above is called a strongly
Hamiltonian system. The mapλ : g→ C∞(M) is called the moment mapping.

Example 2.2 (Coadjoint orbits). LetM = O ⊂ g∗ be a coadjoint orbit of a Lie group
G with Lie algebrag. In this case, we denote byg → X (M) : X �→ X∗ the rule which
associates to an elementX in g its fundamental vector fieldonO:

X∗
x := d

dt

∣∣∣∣
0

Ad∗(exp(−tX))x,

where Ad∗(g)x denotes the coadjoint action of the elementg ∈ G onx ∈ g∗.

The formulaωOx (X∗, Y ∗) := 〈x, [X, Y ]〉 (with X, Y ∈ g) then defines a symplectic
structure called after Kirillov, Kostant and Sauriau, theKKS symplectic formonO. Defining,
for all X ∈ g, the functionλX ∈ C∞(O) by

λX(x) := 〈x,X〉,
one then has that the quadruple(O, ωO, g, λ) is a strongly Hamiltonian system.

In the setting of deformation quantization, there is a natural way to define the quantization
of a classical Hamiltonian system [1,3,9]. We first recall what deformation quantization
(star product) is.

Definition 2.3. Let (M, { , }) be a Poisson manifold. A star product on(M, { , }) is an asso-
ciative multiplication�ν on the spaceC∞(M)[[ν]] of formal power series in the parameter
ν with coefficients in the smooth complex-valued functions onM. One furthermore requires
the following properties to be true:

1. The map�ν : C∞(M)[[ν]] × C∞(M)[[ν]] → C∞(M)[[ν]] is C[[ν]]-bilinear and for
all u ∈ C∞(M) ⊂ C∞(M)[[ν]] one hasu�ν1 = 1�νu = u (C[[ν]] denotes the field of
power series inν with (constant) complex coefficients).

2. For allu, v ∈ C∞(M), one has

u�νvmod(ν) = uv, (u�νv − v�νu)mod(ν2) = 2ν{u, v}.

In other words, a star product is an associative formal deformation of the pointwise
multiplication of functions in the direction of the Poisson structure.

Example 2.4. The Moyal star product onR2n. We fixM = R
2n (or an open set inR2n)

andω = ∑
i<jΛij dxi ∧ dxj with constant coefficientsΛij ’s.
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Let u, v ∈ C∞(R2n) and define their Moyal product by the formal power series:

u�
0
νv := uv +

∞∑
k=1

νk

k!
Λi1j1 · · ·Λikjk ∂k

∂xi1 · · · ∂xik u
∂k

∂xj1 · · · ∂xjk v.

The C[[ν]]-bilinear extension of the above product toC∞(R2n)[[ν]] then defines a star
product on(R2n,Λ) called Moyal star product.

Definition 2.5 (Arnal and Cortet [1]). Let(M,ω, g, λ) be a classical strongly Hamiltonian
system. A star product�ν on (M,ω) is calledg-covariant if for allX, Y ∈ g, one has

λX�νλY − λY�νλX = 2ν{λX, λY }.
In order to avoid technical difficulties in defining the star representation (see below), we
will assume our covariant star products to satisfy the following condition.

Definition 2.6. Let (M,ω, g, λ) be a strongly Hamiltonian system. Let�ν be ag-covariant
star product on(M,ω). We say that�ν has the property (B) if there exists an integerN ∈ N

such that one has

(λX�νu)mod(νN) = (λX�νu)mod(νN+n),

(u�νλX)mod(νN) = (u�νλX)mod(νN+n)

for all X ∈ g andu ∈ C∞(M) andn ∈ N.

In other words, the seriesλX�νu andu�νλX stop at orderN independent ofu inC∞(M).
The data of a covariant star product satisfying the property (B) yields representations

of g. LetEν := C∞(M)[[ν,1/ν]] be the space of formal power series inν and 1/ν with
coefficients inC∞(M). Assume that theg-covariant star product�ν on(M,ω) satisfies the
property (B). Then for allX ∈ g anda = ∑

"∈Zν"a" ∈ Eν , the expression

λX�νa :=
∑
"∈Z
ν"(λX�νa")

defines an element ofEν . Indeed, letck : C∞(M)×C∞(M) → C∞(M)be thekth co-chain
of �ν , that is

u�νv :=
∑

νkck(u, v), u, v ∈ C∞(M).

Then,

λX�νa =
∑
"∈Z
ν"
∑
k≤N

νkck(λX, a") =
∑
m∈Z

νm

( ∑
k+"=m

ck(λX, a")

)
.

Therefore, each sum occurring in the parentheses has only a finite number of terms since
0 ≤ k ≤ N .
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Definition 2.7. Let (M,ω, g, λ) be a strongly Hamiltonian system and�ν be ag-covariant
star product on(M,ω) satisfying the property (B). One defines the representationsρL and
ρR of g onEν by

ρL(X)a := 1

2ν
(λX�νa), ρR(X)a := 1

2ν
(a�νλX).

Definition 2.8. LetG be a connected Lie group with Lie algebrag. Let (M,ω, g, λ) be a
strongly Hamiltonian system. Let�ν be ag-covariant star product on(M,ω) satisfying the
property (B). The associated star representation ofG (if it exists) is the representationπL

of G onEν such that

dπL = ρL .

3. Holonomy-reducible symplectic symmetric spaces

Let G be a connected simple Lie group. Let us denote byg its Lie algebra. LetO be
an adjoint orbit ofG in g. Choose a base pointo in O and denote byh the Lie algebra
of its stabilizer ing. Sinceg is simple theKilling form β establishes an equivariant linear
isomorphism betweeng and its dualg∗. Therefore, every adjoint orbit can be identified with
a coadjoint one. We will denote byωO the KKS symplectic structure onO (cf. Example 2.2).

Definition 3.1. An adjoint orbitO in g is symmetric if there exists an involutive automor-
phismσ of g such thath = {X ∈ g|σ(X) = X}. In this case, we denote byg = h⊕ q the
decomposition ofg induced byσ(σ |q = −idq).

One has [h, q] = q and [q, q] = h. In a symmetric situation, the KKS form induces on
the vector spaceq a bilinear symplectic form which we denote byΩ; this form is invariant
under the action ofh. The triple(g, σ,Ω) is called asimple symplectic symmetric triple[5].
Symmetric orbits have been studied in [2]. In particular, one has the following proposition.

Proposition 3.2. LetO be a symmetric adjoint orbit of a simple Lie groupG and(g, σ,Ω)
be its associated symplectic symmetric triple. The following assumptions are equivalent:

1. The centerz(h) of h contains a non-compact element.
2. The subspaceq splits into a direct sumq = l ⊕ l′ of isomorphich-modules. One has

[l, l] = 0, [l′, l′] = 0 and bothl and l′ are β-isotropic andΩ-Lagrangian subspaces
of q.

Such a symmetric orbit is calledholonomy-reducibleif h acts reducibly onq.

Proposition 3.3. LetO be a holonomy-reducible symmetric orbit ing. We define the map
φ : q = l⊕ l′ → O by

φ(l, l′) := Ad(exp(l) · exp(l′)) · o.
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Thenφ is a Darboux chart on(O, ωO). Precisely, one hasφ∗ωO = Ω.

We transport the infinitesimal action ofg onφ(q) ⊂ O to an infinitesimal action ofg on
q via φ. One then gets a homomorphism of Lie algebra

g→ χ(q) : X → X∗.

Setting

λA(x) := β(φ(x), A), x ∈ q, A ∈ g,
one obtains the strongly Hamiltonian system (cf. Definition 2.1)(q,Ω, g, λ). The main
property of the Darboux chartφ is as follows.

Proposition 3.4. The Moyal star product on the symplectic vector space(q,Ω) is g-cova-
riant. Moreover, the Moyal star product in this case satisfies the property(B).

Definition 3.5. Let S ′
2(q) be the space of distributions onq which are tempered in the

l′-variables w.r.t. the Lebesgue measure dl′ on l′. OnS ′
2(q), we consider the partial Fourier

transformF : S ′
2(q) → S ′

2(q̃) which reads formally as

(Fu)(l, η) :=
∫
l′
e−iΩ(η,l′)u(l, l′)dl′, i := √−1.

Hereq̃ := l ⊕ l, i.e. we identify the dual spacel′∗ with l by use ofΩ. We will also adopt
the notationû := Fu.

We define theR-isomorphism

q̃→ lC : (l, η) → z = l + iνη,

where the parameterν is now considered as beingreal. In q = l ⊕ l′, we choose an
Ω-symplectic basis{La,L′

a; 1 ≤ a ≤ n}, whereLa ∈ l andL′
a ∈ l′. On l, we define the

coordinate systemx = Ω(x,L′
a)La =: xaLa .

If h is an element ofh, we define its trace as

spur(h) := Ω([h,La ], L
′
a).

In this setting, one has the holomorphic constant vector field onlC:

∂za := 1

2ν
(ν(La)l − i(La)η), 1 ≤ a ≤ n.

Definition 3.6. ConsideringlC ⊂ gC, we define, for allA ∈ gC, the polynomials onlC:

hCA(z) := AhC + [Al′C , z] ∈ hC, lCA(z) := AlC + [AhC , z] + 1
2[z, [z,Al′C ]] ∈ lC,

wherez ∈ lC andA = AhC+AlC+Al′C according to the decompositiongC = hC⊕lC⊕l′C.



230 P. Bieliavsky, M. Pevzner / Journal of Geometry and Physics 41 (2002) 224–234

Definition 3.7. For allA ∈ gC, we define the holomorphic vector fieldZ(ν)A ∈ Γ (T 1,0(lC))
by

(Z(ν)A )z · f := (lCA(z))
a(∂za · f )(z),

wherez ∈ lC, f ∈ C∞(lC,C) and, where for allw = w1 + iw2 ∈ lC = l ⊕ il, we set
wa := wa1 + iwa2, 1 ≤ a ≤ n.

In the same way, extending the Killing formβ and the trace spurC-linearly tohC, we
define the complex polynomial of degree 1:

τ
(ν)
A := 1

2ν
(β(hCA, o)+ ν spur(hCA)).

Proposition 3.8. For all A ∈ g, one has

1

2ν
F(λA�νu) = τ

(ν)
A · û+ Z(ν)A · û,

whereu is chosen in such a way that the LHS and the RHS make sense(e.g.u ∈ S(q) the
Schwartz space onq).

In particular, the formula

ρ̂(A)f := τ
(ν)
A f + Z(ν)A · f, A ∈ g, f ∈ C∞(lC)

[[
ν,

1

ν

]]
(1)

defines a (holomorphic) representation ofg onEν := C∞(lC)[[ν,1/ν]].

4. Main theorem

4.1. Euclidean–Jordan algebras and tube domains

An algebraV overR or C is said to be a Jordan algebra if for all elementsx andy in V ,
one has

x · y = y · x, x · (x2 · y) = x2 · (x · y).
For an elementx ∈ V , let L(x) be the linear map ofV defined byL(x)y := x · y. We
denote byτ(x, y) the symmetric bilinear form onV defined byτ(x, y) = TrL(x · y).

A Jordan algebraV is semi-simple if the formτ is non-degenerate onV . A semi-simple
Jordan algebra is unital, we denote bye its identity element.

One defines onV the triple product

{x, y, z} := (x · y) · z+ x · (y · z)− y · (x · z).
We denote byx�y the endomorphism ofV defined byx�y(z) := {x, y, z}. Remark that
x�y = L(x · y)+ [L(x), L(y)] (see [11] for more details).
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Definition 4.1. A Jordan algebraVo over R is said to be Euclidean if the bilinear form
τ(x, y) is positive definite onVo.

Let Vo be an Euclidean Jordan algebra (EJA), then the set

C := {x2|x invertible inVo}
is an open, convex, self-dual cone inVo. Those properties ofC actually characterizeVo as
an EJA.

Let V be the complexification ofVo. Consider the tubeTC = Vo + iC ⊂ V and the Lie
group Aut(TC) of holomorphic automorphisms ofTC . We denote byG = (Aut(TC))o its
identity-connected component.

It can be shown that every elementX of the Lie algebrag of the group Aut(TC) is a
holomorphic vector field on the tubeTC of the form (see [7], p. 209)

X(z) = u+ Tz+ P(z)v,

whereu, v ∈ Vo, T is a linear map of the formT = a�b with a, b ∈ Vo andP(z) =
2L(z)2 − L(z2).

In other words, the Lie algebrag is a symmetric Lie algebra admitting the following
graduation:

g = g−1 ⊕ g0 ⊕ g1,

whereg−1 := Vo is the set of constant polynomial vector fields onTC acting by translations,
g0 := Vo�Vo is the subset ofgl(Vo)preserving the coneC andg1 := {P(z)v = {z, v, z}|v ∈
Vo} is a subset of homogeneous polynomial mapsV → V of degree 2. Remark thatg1 �
Ad(j)Vo wherej ∈ G denotes the Jordan inversej (z) = −z−1.

One writes(u, T , v) for X ∈ g. The following result is classical.

Proposition 4.2. For X = (u, T , v) andX′ = (u′, T ′, v′) in g, one has

[X,X′] = (Tu′ − T ′u, 2u′�v + [T , T ′] − 2u�v′, T ′;v − T ;v′),

whereT ; denotes the adjoint endomorphism with respect toτ .
The mapθ : (u, T , v) �→ (v,−T ;, u) is an involutive automorphism ofg, such that

θ(gi ) = g−i , i ∈ {−1,0,1}. The Lie algebrag is semi-simple.
The Killing form ong is given by

β(X,X′) = βo(T , T
′)+ 2 tr(TT′)− 4τ(u, v′)− 4τ(v, u′),

whereβo denotes the standard Killing form ongl(Vo).

Note that using this identification, we have, forx, y, z ∈ Vo = g−1,

x�y = −1
2[x, θy], (2)

{x, y, z} = −1
2[[x, θy], z]. (3)
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The EJAs and their corresponding symmetric Lie algebras are given by the following table:

g k V Vo

su(n, n) su(n)⊕ iR M(n,C) Herm(n,C)

sp(n,R) su(n)⊕ iR Sym(n,C) Sym(n,R)

so∗(4n) su(2n)⊕ iR Skew(2n,C) Herm(n,H)

so(n,2) so(n)⊕ iR C
n

R
n

e7(−25) e6 ⊕ iR Herm(3,O)⊗ C Herm(3,O)

Adopting to our setting results of [8] (see also [6]), one gets the following proposition.

Proposition 4.3.

1. The groupG = Aut(TC)o admits a symmetric holonomy-reducible coadjoint orbit.
2. Let K be the maximal compact subgroup of G. Then the symmetric spaceG/K � TC is

an Hermitian symmetric space of tube-type.

4.2. Holomorphic discrete series

LetG = (Aut(TC))o be the Hermitian Lie group associated with an Euclidean–Jordan
algebraVo. We denote byn the dimension ofVo and byr its rank. OnVo one defines (in
a canonical way) two homogeneous polynomials>(x) of degreer and tr(x) of degree 1
which coincide with usual determinant and trace in case of matrix Jordan algebras (see [7]
for more details).

For a real parameterm, consider the spaceH 2
m(TC) of holomorphic functionsf ∈ O(TC)

such that

‖f ‖2
m =

∫
TC

|f (z)|2∆m−2n/r (y)dx dy < ∞,

wherez = x + iy ∈ TC . Note that the measure∆−2n/r (y)dx dy onTC is invariant under
the action of the groupG. Form in the Wallach setW (see [7], p. 264) these spaces are
non-empty Hilbert spaces with reproducing kernels.

The action ofG onH 2
m(TC) (m ∈W) given by

πm(g)f (z) = Detm(Dg−1(z))f (g
−1 · z) (4)

is called aholomorphic discrete series representation.
In the above formulaDg−1(z) denotes the derivate map of the conformal transformation

z → g−1 · z of the tube.
The derivate representation

dπm(X)φ(z) = −mr
n

Tr DX(z) · φ(z)−Dφ(z)(X(z)) (5)
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is then given by the following formulae [10]:

forX(z) = (u,0,0), dπm(X)φ(z) = −Duφ(z),
forX(z) = (0,0, v), dπm(X)φ(z) = −2mτ(z, v)φ(z)−Dpv(z)φ(z),

forX(z) = (0, T ,0), dπm(X)φ(z) = −mr
n

Tr T φ(z)−DT (z)φ(z),

whereDAφ(z) denotes the action of the tangent vectorA on the functionφ at the point
z ∈ V .

Theorem 4.4. The star representationρL
ν associated to�ν is equivalent to the derivate

holomorphic discrete series representationdπm for

m = β(o, o)+ nνc

4νrc
,

where c is the eigenvalue of the adjoint action of the base point o.

Proof. We use the notations of Section 3. Using the identification formulae (2) and (3), one
gets that

Z(ν)X = X(z).

Let us now discuss the expression forτ (ν)X = (1/2ν)(β(hCX, o)+ ν spur(hCX)).
The Lie algebrah is reductive and therefore it admits the following decompositionh =

z(h) ⊕ [h, h], wherez(h) is the center ofh. We writeH = Hz + Hd according to this
decomposition. Because the trace function vanishes on the Lie algebra commutator, we have
spur(H) = spur(Hz). But the center ofh is one-dimensional and any elementHz ∈ z(h) can
be written asHz = hz · o (see e.g. [2]). Therefore,τ (ν)H = (1/2ν)[β(Hz, o)+ ν spur(Hz)].
Furthermore, we haveβ(Hz, o) = hzβ(o, o) and

spur(Hz) = hz · ad(o)|l = hzc · id|l = hznc.

In other words it means thatτ νX is proportional to Tr(ad(hCX)|l).
Observe now that for the polynomialhCX(z) introduced in Definition 3.6, one hashCX(z) =

−2DX(z). So, finally we have

τ
(ν)
X = −β(o, o)+ nνc

4nνc
Tr DX.

The identification of corresponding terms in formulae (1) and (5) completes the proof.�

Remark. The vector field partZ(ν)X of the star representation̂ρ(X), X ∈ g (see (1)) is in
general singular on the entireV = lC. By this we mean that, denoting byφXt the local flow
ofX, the set of “bad” Cauchy dataSX := {z ∈ V |φXt (z) is not defined for all values oft} is
in general not empty. However, in the case where the groupG is the automorphism group
of a tube domain, Theorem 4.4 shows that the complementary setU of ∪X∈gSX = Vo in V
is not empty. The infinitesimal action ofg on (a connected component of)U exponentiates
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toG as its action on the holomorphic tubular realization ofG/K. A deep geometric study
and in particular relations between star representations and Riccati-type ordinary differential
equations (see [12]) has not been investigated here. However, one can at least say that, given
a holonomy-reducible symmetric orbitO of G, one then canonically gets a one-parameter
family of representations{ρν}ν∈R of g deforming the infinitesimal action(ρ0) of g on
an open subsetφ(p) of O. This parameter family leads to an interpolation between the
infinitesimal action ofg onG/H and its holomorphic action onG/K (ρν for the value
−(1/nc)β(o, o) of ν).
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